At LINEAEDGE, we use SAUNA, ICE BATH, and RED LIGHT THERAPY because they address health on a holistic and systemic level.
Holistic solutions engage with the interconnected web of various process in the body, so many of the things outlined here have overlapping causes and effects.
(For example, here we discuss increased lifespan as a slowing of the aging process, but a reduction in cardiovascular disease also contributes to increased lifespan in meaningful ways.)

This is just an introduction
As you learn more of the science behind what we offer at LINEAEDGE, you will start connecting more of the dots, revealing a constellation of mechanisms working together to produce benefits so impressive that it’s sometimes hard to believe.
Sauna
When we expose ourselves to high levels of heat, our bodies produce something called Heat Shock Proteins (HSPs). There are a number of HSPs, and one in particular – HSP70 – has been associated with increased longevity.1 Sauna use has also been linked with decreased stress,2 which slows the aging process,3 and decreased muscle atrophy, meaning that we can keep our muscle mass longer as we age, decreasing the likelihood of injury and increasing vitality later in life.4
1. Singh, R., Kølvraa, S., Bross, P., Christensen, K., Bathum, L., Gregersen, N., Tan, Q., & Rattan, S. I. (2010). Anti-inflammatory heat shock protein 70 genes are positively associated with human survival. Current pharmaceutical design, 16(7), 796–801. https://doi.org/10.2174/138161210790883499
2. Jezová, D., Vigas, M., Tatár, P., Jurcovicová, J., & Palát, M. (1985). Rise in plasma beta-endorphin and ACTH in response to hyperthermia in sauna. Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme, 17(12), 693–694. https://doi.org/10.1055/s-2007-1013648
3. Miller, D. B., & O'Callaghan, J. P. (2005). Aging, stress and the hippocampus. Ageing research reviews, 4(2), 123–140. https://doi.org/10.1016/j.arr.2005.03.002
4. Srikanthan, P., & Karlamangla, A. S. (2014). Muscle mass index as a predictor of longevity in older adults. The American journal of medicine, 127(6), 547–553. https://doi.org/10.1016/j.amjmed.2014.02.007
Another study (randomized controlled) involving 28 otherwise healthy people diagnosed with mild depression showed similar benefits. The group that had received four weeks of sauna sessions noted reduced body aches and anxiety, as well as improved appetite–all symptoms of depression–compared to the control group.107
106. Janssen CW, Lowry CA, Mehl MR, Allen JJ, Kelly KL, Gartner DE, Medrano A, Begay TK, Rentscher K, White JJ, Fridman A, Roberts LJ, Robbins ML, Hanusch KU, Cole SP, Raison CL. Whole-Body Hyperthermia for the Treatment of Major Depressive Disorder: A Randomized Clinical Trial. JAMA Psychiatry. 2016 Aug 1;73(8):789-95. doi: 10.1001/jamapsychiatry.2016.1031. Erratum in: JAMA Psychiatry. 2016 Aug 1;73(8):878. PMID: 27172277.
107. Masuda A, Nakazato M, Kihara T, Minagoe S, Tei C. Repeated thermal therapy diminishes appetite loss and subjective complaints in mildly depressed patients. Psychosom Med. 2005 Jul-Aug;67(4):643-7. doi: 10.1097/01.psy.0000171812.67767.8f. PMID: 16046381.
Sauna use has been demonstrated to mimic the effects of light aerobic exercise, and similarly, repeated use shown to improve one’s endurance, heart size, and Heart Rate Variability (HRV)5 which is your heart’s ability to speed up or slow down as appropriate to stimuli. These effects, combined with the benefit of improved mitochondrial function, also result in more efficient use of oxygen in your blood, which makes each heartbeat more effective.6 Lastly, the reduction of stress by lowering cortisol7 means improved blood pressure – a driver of overall cardiovascular health that, in excess, can cause a number of cardiovascular diseases.8
5. Laukkanen T, Lipponen J, Kunutsor SK, Zaccardi F, Araújo CGS, Mäkikallio TH, Khan H, Willeit P, Lee E, Poikonen S, Tarvainen M, Laukkanen JA. Recovery from sauna bathing favorably modulates cardiac autonomic nervous system. Complement Ther Med. 2019 Aug;45:190-197. doi: 10.1016/j.ctim.2019.06.011. Epub 2019 Jun 22. PMID: 31331560.
6. Hafen PS, Preece CN, Sorensen JR, Hancock CR, Hyldahl RD. Repeated exposure to heat stress induces mitochondrial adaptation in human skeletal muscle. J Appl Physiol (1985). 2018 Nov 1;125(5):1447-1455. doi: 10.1152/japplphysiol.00383.2018. Epub 2018 Jul 19. PMID: 30024339.
7. Kukkonen-Harjula K, Oja P, Laustiola K, Vuori I, Jolkkonen J, Siitonen S, Vapaatalo H. Haemodynamic and hormonal responses to heat exposure in a Finnish sauna bath. Eur J Appl Physiol Occup Physiol. 1989;58(5):543-50. doi: 10.1007/BF02330710. PMID: 2759081.
8. Whitworth JA, Williamson PM, Mangos G, Kelly JJ. Cardiovascular consequences of cortisol excess. Vasc Health Risk Manag. 2005;1(4):291-9. doi: 10.2147/vhrm.2005.1.4.291. PMID: 17315601; PMCID: PMC1993964.
Sauna use has been shown to increase the production of heat shock proteins and release of the hormone prolactin.9 HSPs are protective in two ways: In the case of brain injuries (ischemic [stroke], traumatic, and excitotoxic [epileptic]), one way that your body naturally responds is by increasing HSP70 production10 — one of the many HSPs increased by sauna use; for neurodegenerative diseases, HSPs have been demonstrated to repair the shape of malformed proteins which are believed to be the cause of neurodegenerative disease.11 Prolactin promotes myelin growth which plays a role in brain function and repair of nerve cell damage.12
9. Iguchi M, Littmann AE, Chang SH, Wester LA, Knipper JS, Shields RK. Heat stress and cardiovascular, hormonal, and heat shock proteins in humans. J Athl Train. 2012 Mar-Apr;47(2):184-90. doi: 10.4085/1062-6050-47.2.184. PMID: 22488284; PMCID: PMC3418130.
10. Yenari MA, Giffard RG, Sapolsky RM, Steinberg GK. The neuroprotective potential of heat shock protein 70 (HSP70). Mol Med Today. 1999 Dec;5(12):525-31. doi: 10.1016/s1357-4310(99)01599-3. PMID: 10562718.
11. Danzer KM, Ruf WP, Putcha P, Joyner D, Hashimoto T, Glabe C, Hyman BT, McLean PJ. Heat-shock protein 70 modulates toxic extracellular α-synuclein oligomers and rescues trans-synaptic toxicity. FASEB J. 2011 Jan;25(1):326-36. doi: 10.1096/fj.10-164624. Epub 2010 Sep 27. PMID: 20876215; PMCID: PMC3005424.
12. Gregg C, Shikar V, Larsen P, Mak G, Chojnacki A, Yong VW, Weiss S. White matter plasticity and enhanced remyelination in the maternal CNS. J Neurosci. 2007 Feb 21;27(8):1812-23. doi: 10.1523/JNEUROSCI.4441-06.2007. PMID: 17314279; PMCID: PMC6673564.
Raising core body temperature—what happens in a sauna—has been shown to improve glucose uptake to skeletal muscles (by 40%) by increasing expression of glucose transporters.13 This improvement can improve one’s insulin sensitivity, which shows promise to those with Type II Diabetes,14 15 a disease of the body’s inability to manage blood sugar properly.
13. Perseghin G, Price TB, Petersen KF, Roden M, Cline GW, Gerow K, Rothman DL, Shulman GI. Increased glucose transport-phosphorylation and muscle glycogen synthesis after exercise training in insulin-resistant subjects. N Engl J Med. 1996 Oct 31;335(18):1357-62. doi: 10.1056/NEJM199610313351804. PMID: 8857019.
14. Kokura S, Adachi S, Manabe E, Mizushima K, Hattori T, Okuda T, Nakabe N, Handa O, Takagi T, Naito Y, Yoshida N, Yoshikawa T. Whole body hyperthermia improves obesity-induced insulin resistance in diabetic mice. Int J Hyperthermia. 2007 May;23(3):259-65. doi: 10.1080/02656730601176824. PMID: 17523018.
15. Devlin JT, Hirshman M, Horton ED, Horton ES. Enhanced peripheral and splanchnic insulin sensitivity in NIDDM men after single bout of exercise. Diabetes. 1987 Apr;36(4):434-9. doi: 10.2337/diab.36.4.434. PMID: 3102297.
You’ll do a lot of sweating in a sauna, which is great because heavy metals (arsenic, cadmium, lead, and mercury) 16, BPA 17, and pesticides (organochlorinated) 18 are excreted in sweat, meaning every time you’re in sauna, you’re creating more opportunities to remove these harmful substances from your body.
16. Sears ME, Kerr KJ, Bray RI. Arsenic, cadmium, lead, and mercury in sweat: a systematic review. J Environ Public Health. 2012;2012:184745. doi: 10.1155/2012/184745. Epub 2012 Feb 22. PMID: 22505948; PMCID: PMC3312275.
17. Genuis SJ, Beesoon S, Birkholz D, Lobo RA. Human excretion of bisphenol A: blood, urine, and sweat (BUS) study. J Environ Public Health. 2012;2012:185731. doi: 10.1155/2012/185731. Epub 2011 Dec 27. PMID: 22253637; PMCID: PMC3255175.
18. Genuis SJ, Lane K, Birkholz D. Human Elimination of Organochlorine Pesticides: Blood, Urine, and Sweat Study. Biomed Res Int. 2016;2016:1624643. doi: 10.1155/2016/1624643. Epub 2016 Oct 5. PMID: 27800487; PMCID: PMC5069380.
During exercise, HSP70 production is induced, maintaining muscle fibers as well as their regeneration and recovery. When an injured muscle is in disuse, sauna is a great way to release HSP70 which may stave off atrophy while the damaged muscle recovers. 19 While this has only been directly demonstrated in rodent models, it offers great promise to humans.20
Muscle growth is improved by sauna in 3 ways: One is the induction of HSP70 assisting muscle “reloading”, which is a necessary precursor for muscle growth to follow.21 Another is the massive release of growth hormone (5x in one study),22 which increases protein synthesis and decreases protein degradation.23 24 The third mechanism is the improved insulin sensitivity, which when at adequate levels, prevents muscle protein breakdown (catabolism) without affecting the growth of new muscles. 25 26 27
19. Senf SM. Skeletal muscle heat shock protein 70: diverse functions and therapeutic potential for wasting disorders. Front Physiol. 2013 Nov 11;4:330. doi: 10.3389/fphys.2013.00330. PMID: 24273516; PMCID: PMC3822288.
20. Selsby JT, Dodd SL. Heat treatment reduces oxidative stress and protects muscle mass during immobilization. Am J Physiol Regul Integr Comp Physiol. 2005 Jul;289(1):R134-9. doi: 10.1152/ajpregu.00497.2004. Epub 2005 Mar 10. PMID: 15761186.
21. Selsby JT, Rother S, Tsuda S, Pracash O, Quindry J, Dodd SL. Intermittent hyperthermia enhances skeletal muscle regrowth and attenuates oxidative damage following reloading. J Appl Physiol (1985). 2007 Apr;102(4):1702-7. doi: 10.1152/japplphysiol.00722.2006. Epub 2006 Nov 16. PMID: 17110516.
22. Kukkonen-Harjula K, Oja P, Laustiola K, Vuori I, Jolkkonen J, Siitonen S, Vapaatalo H. Haemodynamic and hormonal responses to heat exposure in a Finnish sauna bath. Eur J Appl Physiol Occup Physiol. 1989;58(5):543-50. doi: 10.1007/BF02330710. PMID: 2759081.
23. Velloso CP. Regulation of muscle mass by growth hormone and IGF-I. Br J Pharmacol. 2008 Jun;154(3):557-68. doi: 10.1038/bjp.2008.153. PMID: 18500379; PMCID: PMC2439518.
24. Lecker SH, Goldberg AL, Mitch WE. Protein degradation by the ubiquitin-proteasome pathway in normal and disease states. J Am Soc Nephrol. 2006 Jul;17(7):1807-19. doi: 10.1681/ASN.2006010083. Epub 2006 May 31. PMID: 16738015.
25. Chow LS, Albright RC, Bigelow ML, Toffolo G, Cobelli C, Nair KS. Mechanism of insulin's anabolic effect on muscle: measurements of muscle protein synthesis and breakdown using aminoacyl-tRNA and other surrogate measures. Am J Physiol Endocrinol Metab. 2006 Oct;291(4):E729-36. doi: 10.1152/ajpendo.00003.2006. Epub 2006 May 16. PMID: 16705065.
26. Guillet C, Masgrau A, Walrand S, Boirie Y. Impaired protein metabolism: interlinks between obesity, insulin resistance and inflammation. Obes Rev. 2012 Dec;13 Suppl 2:51-7. doi: 10.1111/j.1467-789X.2012.01037.x. PMID: 23107259.
27. Louard RJ, Fryburg DA, Gelfand RA, Barrett EJ. Insulin sensitivity of protein and glucose metabolism in human forearm skeletal muscle. J Clin Invest. 1992 Dec;90(6):2348-54. doi: 10.1172/JCI116124. PMID: 1469091; PMCID: PMC443389.
One of the markers of overtraining is the level of myoglobin in the blood plasma. Myoglobin in excess levels can hinder the kidney's ability to filter and contribute to a number of other serious medical complications.28 The body’s release of HSP32 in response to elevated core body temperature helps with this problem because this particular heat shock protein degrades myoglobin before it can damage kidneys. Unlike the other heat shock proteins, which fix malformed proteins, HSP32’s uses destruction for our benefit since it’s targeted against this harmful protein. 29
28. Zimmerman JL, Shen MC. Rhabdomyolysis. Chest. 2013 Sep;144(3):1058-1065. doi: 10.1378/chest.12-2016. PMID: 24008958.
29. Wei Q, Hill WD, Su Y, Huang S, Dong Z. Heme oxygenase-1 induction contributes to renoprotection by G-CSF during rhabdomyolysis-associated acute kidney injury. Am J Physiol Renal Physiol. 2011 Jul;301(1):F162-70. doi: 10.1152/ajprenal.00438.2010. Epub 2011 Apr 20. PMID: 21511696; PMCID: PMC3129892.
Sauna use leads to increased blood flow to your muscles, supplying them with needed nutrients instead of them having to rely on local glycogen stores.30 Additionally, it improves blood flow to the heart, meaning you get more supply for the same amount of strain on the heart.31 Additionally, as your body becomes more accustomed to regulating your core body temperature, you begin to sweat at a lower temperature, allowing you to stay cooler longer which reduces the strain of exercise.32 An interesting study showed that these endurance benefits contributed to a 32% increase in running distance to exhaustion and increase of blood plasma volume and red blood cells (7% and 3.5%, respectively) in competitive male runners. 33
30. King DS, Costill DL, Fink WJ, Hargreaves M, Fielding RA. Muscle metabolism during exercise in the heat in unacclimatized and acclimatized humans. J Appl Physiol (1985). 1985 Nov;59(5):1350-4. doi: 10.1152/jappl.1985.59.5.1350. PMID: 4066564.
31. Michael N. Sawka, C. B. W., Kent B. Pandolf. Thermoregulatory Responses to Acute Exercise-Heat Stress and Heat Acclimation. Handbook of Physiology, Environmental Physiology (2011).
32. Costa RJ, Crockford MJ, Moore JP, Walsh NP. Heat acclimation responses of an ultra-endurance running group preparing for hot desert-based competition. Eur J Sport Sci. 2014;14 Suppl 1:S131-41. doi: 10.1080/17461391.2012.660506. Epub 2012 Mar 19. PMID: 24444197.
33. Scoon GS, Hopkins WG, Mayhew S, Cotter JD. Effect of post-exercise sauna bathing on the endurance performance of competitive male runners. J Sci Med Sport. 2007 Aug;10(4):259-62. doi: 10.1016/j.jsams.2006.06.009. Epub 2006 Jul 31. PMID: 16877041.
Sauna improves mood by stimulating your body to upregulate and become more sensitive to the endorphins that your body naturally produces. This is because during your session, your body produces a peptide called “dynorphin” which causes the mu opioid receptors (the primary receptor of endogenous opiods34) to be more sensitive to beta-endorphin. This means you’ll feel better after your sauna session since the “fuel” and means to sense good feelings will be increased.35
Your body releases norepinephrine and prolactin in response to the raising of core body temperature.36 37 They are hypothesized to play a role in regulating body temperature, but they also have great benefits to your brain. Norepinephrine is a neurotransmitter that causes an increases of alertness, focus and attention38, while prolactin promotes myelin growth that makes your brain function faster.39 40
36. Iguchi M, Littmann AE, Chang SH, Wester LA, Knipper JS, Shields RK. Heat stress and cardiovascular, hormonal, and heat shock proteins in humans. J Athl Train. 2012 Mar-Apr;47(2):184-90. doi: 10.4085/1062-6050-47.2.184. PMID: 22488284; PMCID: PMC3418130.
37. Simmonds MA, Iversen LL. Thermoregulation: effects of environmental temperature on turnover of hypothalamic norepinephrine. Science. 1969 Jan 31;163(3866):473-4. doi: 10.1126/science.163.3866.473. PMID: 5762398.
38. Berridge CW, Schmeichel BE, España RA. Noradrenergic modulation of wakefulness/arousal. Sleep Med Rev. 2012 Apr;16(2):187-97. doi: 10.1016/j.smrv.2011.12.003. Epub 2012 Jan 31. PMID: 22296742; PMCID: PMC3278579.
39. Salbaum JM, Cirelli C, Walcott E, Krushel LA, Edelman GM, Tononi G. Chlorotoxin-mediated disinhibition of noradrenergic locus coeruleus neurons using a conditional transgenic approach. Brain Res. 2004 Jul 30;1016(1):20-32. doi: 10.1016/j.brainres.2004.03.078. PMID: 15234248.
40. Gregg C, Shikar V, Larsen P, Mak G, Chojnacki A, Yong VW, Weiss S. White matter plasticity and enhanced remyelination in the maternal CNS. J Neurosci. 2007 Feb 21;27(8):1812-23. doi: 10.1523/JNEUROSCI.4441-06.2007. PMID: 17314279; PMCID: PMC6673564.
One of the cascading effects of sauna use is the increase of what’s called Brain-Derived Neurotrophic Factor (BDNF), which increases the growth of new brain cells, fortifies existing ones, and is important for long-term memory.41 42
41. Goekint, M., Roelands, B., Heyman, E., Njemini, R. & Meeusen, R. Influence of citalopram and environmental temperature on exercise-induced changes in BDNF. Neuroscience letters 494, 150-154, doi:10.1016/j.neulet.2011.03.001 (2011).
42. Maniam, J. & Morris, M. J. Voluntary exercise and palatable high-fat diet both improve behavioural profile and stress responses in male rats exposed to early life stress: role of hippocampus. Psychoneuroendocrinology 35, 1553-1564, doi:10.1016/j.psyneuen.2010.05.012 (2010).
Similar to how it impacts mood by increasing sensitivity to endorphins in the brain, sauna use makes the rest of your body more sensitive to them as well. One of those affected is beta-endorphin, a neuropeptide that numbs or dulls pain. On a molecular level, beta endorphin is 33-times more potent than morphine. 43Interesting fact: endorphin is a contraction of the words “endogenous” (originating from within the organism) and “morphine.”
43. Loh HH, Tseng LF, Wei E, Li CH. beta-endorphin is a potent analgesic agent. Proc Natl Acad Sci U S A. 1976 Aug;73(8):2895-8. doi: 10.1073/pnas.73.8.2895. PMID: 8780; PMCID: PMC430793.
Repeated sauna use improves blood pressure by enhancing “arterial compliance”, which is the ability of the tissues that make up your arteries to expand and contract.44 This improvement means that your arteries can optimally respond to the needs of your body so that blood pressure won’t be unnecessarily raised by stiff arteries.45
44. Lee E, Laukkanen T, Kunutsor SK, Khan H, Willeit P, Zaccardi F, Laukkanen JA. Sauna exposure leads to improved arterial compliance: Findings from a non-randomised experimental study. Eur J Prev Cardiol. 2018 Jan;25(2):130-138. doi: 10.1177/2047487317737629. Epub 2017 Oct 19. PMID: 29048215.
45. London GM, Marchais SJ, Safar ME. Arterial compliance in hypertension. J Hum Hypertens. 1989 Jun;3 Suppl 1:53-6. PMID: 2674442.
Ice
Bath
Your body releases massive amounts of norepinephrine when exposed to cold, similar to how it responds to heat. A 20-second plunge in 40°F water has shown to increase norepinephrine by 200 to 300 percent,46 which is amazing because this neurotransmitter also increases vigilance, focus, and attention, and improves mood.47
46. Leppäluoto J, Westerlund T, Huttunen P, Oksa J, Smolander J, Dugué B, Mikkelsson M. Effects of long-term whole-body cold exposures on plasma concentrations of ACTH, beta-endorphin, cortisol, catecholamines and cytokines in healthy females. Scand J Clin Lab Invest. 2008;68(2):145-53. doi: 10.1080/00365510701516350. PMID: 18382932.
47. Jedema HP, Gold SJ, Gonzalez-Burgos G, Sved AF, Tobe BJ, Wensel T, Grace AA. Chronic cold exposure increases RGS7 expression and decreases alpha(2)-autoreceptor-mediated inhibition of noradrenergic locus coeruleus neurons. Eur J Neurosci. 2008 May;27(9):2433-43. doi: 10.1111/j.1460-9568.2008.06208.x. PMID: 18461718; PMCID: PMC2879008.
Being submerged in cold water causes the body to release a cold-shock protein called RBM3, which protects against neurodegenerative disease by increasing protein synthesis and synapse loss.48
Cold exposure causes adipose tissue (fat tissue) to brown,49 which improves the quantity and function of your mitochondria. Improved mitochondrial function is inversely related to diabetes because the more healthy and abundant your mitochondria, the better your ability to metabolize glucose.50
Cold exposure increases your immune cells CD25 lymphocytes and CD14 monocytes, which are associated with protecting your respiratory system. A study was performed on winter swimmers that showed a reduction of the respiratory tract infections by 40% in those that regularly swam in cold water.51
48. Williams DR, Epperson LE, Li W, Hughes MA, Taylor R, Rogers J, Martin SL, Cossins AR, Gracey AY. Seasonally hibernating phenotype assessed through transcript screening. Physiol Genomics. 2005 Dec 14;24(1):13-22. doi: 10.1152/physiolgenomics.00301.2004. Epub 2005 Oct 25. PMID: 16249311.
49. Blondin DP, Labbé SM, Tingelstad HC, Noll C, Kunach M, Phoenix S, Guérin B, Turcotte EE, Carpentier AC, Richard D, Haman F. Increased brown adipose tissue oxidative capacity in cold-acclimated humans. J Clin Endocrinol Metab. 2014 Mar;99(3):E438-46. doi: 10.1210/jc.2013-3901. Epub 2014 Jan 13. PMID: 24423363; PMCID: PMC4213359.
50. Matsushita M, Yoneshiro T, Aita S, Kameya T, Sugie H, Saito M. Impact of brown adipose tissue on body fatness and glucose metabolism in healthy humans. Int J Obes (Lond). 2014 Jun;38(6):812-7. doi: 10.1038/ijo.2013.206. Epub 2013 Nov 11. PMID: 24213309.
51. Janský L, Pospísilová D, Honzová S, Ulicný B, Srámek P, Zeman V, Kamínková J. Immune system of cold-exposed and cold-adapted humans. Eur J Appl Physiol Occup Physiol. 1996;72(5-6):445-50. doi: 10.1007/BF00242274. PMID: 8925815.
The browning of adipose tissue (fat tissue) that results from exposure to cold49 improves the quantity and function of your mitochondria. More abundant and healthier mitochondria in your fat cells means that the fat is more available to be used as fuel, leading to weight loss as it’s metabolized.51 108
49. Blondin DP, Labbé SM, Tingelstad HC, Noll C, Kunach M, Phoenix S, Guérin B, Turcotte EE, Carpentier AC, Richard D, Haman F. Increased brown adipose tissue oxidative capacity in cold-acclimated humans. J Clin Endocrinol Metab. 2014 Mar;99(3):E438-46. doi: 10.1210/jc.2013-3901. Epub 2014 Jan 13. PMID: 24423363; PMCID: PMC4213359.
52. Dulloo AG. Translational issues in targeting brown adipose tissue thermogenesis for human obesity management. Ann N Y Acad Sci. 2013 Oct;1302(1):1-10. doi: 10.1111/nyas.12304. PMID: 24138104; PMCID: PMC4285858.
108. Cypess AM, Weiner LS, Roberts-Toler C, Franquet Elía E, Kessler SH, Kahn PA, English J, Chatman K, Trauger SA, Doria A, Kolodny GM. Activation of human brown adipose tissue by a β3-adrenergic receptor agonist. Cell Metab. 2015 Jan 6;21(1):33-8. doi: 10.1016/j.cmet.2014.12.009. PMID: 25565203; PMCID: PMC4298351.
The improved quantity and function of mitochondria that results in the browning of adipose tissue (fat tissue)49 allows your body to better manage blood sugar concentration and, in one study, was also observed lower levels of LDL cholesterol from repeated cold exposure.53
49. Blondin DP, Labbé SM, Tingelstad HC, Noll C, Kunach M, Phoenix S, Guérin B, Turcotte EE, Carpentier AC, Richard D, Haman F. Increased brown adipose tissue oxidative capacity in cold-acclimated humans. J Clin Endocrinol Metab. 2014 Mar;99(3):E438-46. doi: 10.1210/jc.2013-3901. Epub 2014 Jan 13. PMID: 24423363; PMCID: PMC4213359.
53. Matsushita M, Yoneshiro T, Aita S, Kameya T, Sugie H, Saito M. Impact of brown adipose tissue on body fatness and glucose metabolism in healthy humans. Int J Obes (Lond). 2014 Jun;38(6):812-7. doi: 10.1038/ijo.2013.206. Epub 2013 Nov 11. PMID: 24213309.
Cold exposure has shown to increase the number of white blood cells, NK cells (which kill cancer cells), and concentrations of anti-inflammatory proteins like IL-6.54 55
54. Brenner IK, Castellani JW, Gabaree C, Young AJ, Zamecnik J, Shephard RJ, Shek PN. Immune changes in humans during cold exposure: effects of prior heating and exercise. J Appl Physiol (1985). 1999 Aug;87(2):699-710. doi: 10.1152/jappl.1999.87.2.699. PMID: 10444630.
55. Lackovic V, Borecký L, Vigas M, Rovenský J. Activation of NK cells in subjects exposed to mild hyper- or hypothermic load. J Interferon Res. 1988 Jun;8(3):393-402. doi: 10.1089/jir.1988.8.393. PMID: 2457640.
The release of norepinephrine to maintain core body temperature decreases a proinflammatory cytokine responsible for systemic inflammation (tumor necrosis alpha56, IL-2, and IL-8) while also increasing anti-inflammatory cytokines (IL-10). 57
56. Pournot H, Bieuzen F, Louis J, Mounier R, Fillard JR, Barbiche E, Hausswirth C. Time-course of changes in inflammatory response after whole-body cryotherapy multi exposures following severe exercise. PLoS One. 2011;6(7):e22748. doi: 10.1371/journal.pone.0022748. Epub 2011 Jul 28. Erratum in: PLoS One. 2011;6(11). doi:10.1371/annotation/0adb3312-7d2b-459c-97f7-a09cfecf5881. Mounier, Rémi [added]. PMID: 21829501; PMCID: PMC3145670.
57. Lombardi G, Ziemann E, Banfi G. Whole-Body Cryotherapy in Athletes: From Therapy to Stimulation. An Updated Review of the Literature. Front Physiol. 2017 May 2;8:258. doi: 10.3389/fphys.2017.00258. PMID: 28512432; PMCID: PMC5411446.
While there is no cure for arthritis, studies have shown that cold exposure can mitigate the pain associated with the condition.58
58. Lin YJ, Anzaghe M, Schülke S. Update on the Pathomechanism, Diagnosis, and Treatment Options for Rheumatoid Arthritis. Cells. 2020 Apr 3;9(4):880. doi: 10.3390/cells9040880. PMID: 32260219; PMCID: PMC7226834.
Cold exposure benefits athletic performance by mitigating the negative effects of training and enhancing performance. It has been shown to blunt the negative effects of overtraining, which is the excessive inflammation that causes muscle damage, fatigue, and immune dysfunction.59
For endurance exercise, cold exposure has shown to decrease muscle soreness; one meta-analysis observed a 50% improvement.60
Cold immersion has been shown to improve recovery from team sports when done within 24 hours of the activity; benefits noted were reduced muscle soreness, fatigue, and biomarkers of muscle damage (such as creatine kinase).61
For tennis and rowing, studies have shown improved stroke effectiveness in Tennis without affecting resting metabolic rate. This is believed to be the result of reduced inflammatory cytokines and reactive oxygen species, as well as an increase of anti-inflammatory cytokines.62 63 64
For cycling, a study showed an increase in power (2.7%-3%) and average sprint power (4%)65, suggesting top performers can get an extra edge over the competition.
59. Banfi, Giuseppe, Gianluca Melegati, Alessandra Barassi, Giada Dogliotti, Gianvico Melzi d’Eril, Benoit Dugué, and Massimiliano M. Corsi. Effects of whole-body cryotherapy on serum mediators of inflammation and serum muscle enzymes in athletes Journal of Thermal Biology 34, no. 2 (February 2009): 55–59. https://doi.org/10.1016/j.jtherbio.2008.10.003.
60. Machado AF, Ferreira PH, Micheletti JK, de Almeida AC, Lemes ÍR, Vanderlei FM, Netto Junior J, Pastre CM. Can Water Temperature and Immersion Time Influence the Effect of Cold Water Immersion on Muscle Soreness? A Systematic Review and Meta-Analysis. Sports Med. 2016 Apr;46(4):503-14. doi: 10.1007/s40279-015-0431-7. PMID: 26581833; PMCID: PMC4802003.
61. Higgins TR, Greene DA, Baker MK. Effects of Cold Water Immersion and Contrast Water Therapy for Recovery From Team Sport: A Systematic Review and Meta-analysis. J Strength Cond Res. 2017 May;31(5):1443-1460. doi: 10.1519/JSC.0000000000001559. PMID: 27398915.
62. Ziemann E, Olek RA, Kujach S, Grzywacz T, Antosiewicz J, Garsztka T, Laskowski R. Five-day whole-body cryostimulation, blood inflammatory markers, and performance in high-ranking professional tennis players. J Athl Train. 2012 Nov-Dec;47(6):664-72. doi: 10.4085/1062-6050-47.6.13. PMID: 23182015; PMCID: PMC3499891.
63. Gabay C. Interleukin-6 and chronic inflammation. Arthritis Res Ther. 2006;8 Suppl 2(Suppl 2):S3. doi: 10.1186/ar1917. Epub 2006 Jul 28. PMID: 16899107; PMCID: PMC3226076.
64. Wozniak A, Wozniak B, Drewa G, Mila-Kierzenkowska C. The effect of whole-body cryostimulation on the prooxidant-antioxidant balance in blood of elite kayakers after training. Eur J Appl Physiol. 2007 Nov;101(5):533-7. doi: 10.1007/s00421-007-0524-6. Epub 2007 Aug 1. PMID: 17668231.
65. Halson SL, Bartram J, West N, Stephens J, Argus CK, Driller MW, Sargent C, Lastella M, Hopkins WG, Martin DT. Does hydrotherapy help or hinder adaptation to training in competitive cyclists? Med Sci Sports Exerc. 2014 Aug;46(8):1631-9. doi: 10.1249/MSS.0000000000000268. PMID: 24504431.
Red
Light
Therapy
Seven years after the laser was invented, tests were conducted to see if a ruby laser (producing 694nm) could be used as a malignant cancer treatment in rats. In the experiment, both the control group and those subjected to the light had their backs shaved. While the laser had no effect on the tumors, those conducting the experiment noticed that the hair on the rats subjected to the light grew back faster than the control group66. This unexpected observation led to further experiments and birthed the field of photobiomodulation (PBM), or light therapy.67
While the results are undeniable, there are two proposed mechanisms of action:
- Improving your cell's ability to produce ATP, the basic energy unit of your body.6869
- Activation of light-sensitive ion channels which allow calcium to enter the cell. Calcium is important, because it facilitates communication of nearly all functions of your cells.70 After the initial photon absorption events, numerous signaling pathways are activated via reactive oxygen species, cyclic AMP, NO and Ca2+, leading to activation of transcription factors. These transcription factors can lead to increased expression of genes related to protein synthesis, cell migration and proliferation, anti-inflammatory signaling, anti-apoptotic (prevent cell death) proteins71 72, antioxidant enzymes.
Cells with more energy are better able to perform their designated function, repair, and carry out their life cycle.
Environmental stress and chronic inflammation can make energy production less efficient because it causes a critical enzyme (cytochrome c oxidase) to bond with nitric oxide (NO) instead of oxygen (O), which is required to produce ATP; Fortunately, this bond can be broken when cytochrome c oxidase is hit with specific photons of red and near infrared light. The NO is then free to improve blood flow, especially to the brain.75
We need light every day, but with our modern lifestyles, most people don’t get enough exposure to natural sunlight. PBM works by producing isolated wavelengths of red and NIR light, creating the same benefits as the natural red and NIR light from full-spectrum sunlight, but without any harmful UV radiation.
Researchers are still working on understanding the mechanism of action of PBM, but there have been powerful benefits clearly observed. We have a decent understanding of what happens, but the how has yet to be fully confirmed.
This list below is made up of the kinds of benefits that resulted from PBM similar to what you can experience at Lineaedge.
73. Williams DR, Epperson LE, Li W, Hughes MA, Taylor R, Rogers J, Martin SL, Cossins AR, Gracey AY. Seasonally hibernating phenotype assessed through transcript screening. Physiol Genomics. 2005 Dec 14;24(1):13-22. doi: 10.1152/physiolgenomics.00301.2004. Epub 2005 Oct 25. PMID: 16249311.
74 Antonialli FC, De Marchi T, Tomazoni SS, Vanin AA, dos Santos Grandinetti V, de Paiva PR, Pinto HD, Miranda EF, de Tarso Camillo de Carvalho P, Leal-Junior EC. Phototherapy in skeletal muscle performance and recovery after exercise: effect of combination of super-pulsed laser and light-emitting diodes. Lasers Med Sci. 2014 Nov;29(6):1967-76. doi: 10.1007/s10103-014-1611-7. Epub 2014 Jun 19. PMID: 24942380.
75 Miranda EF, Vanin AA, Tomazoni SS, Grandinetti Vdos S, de Paiva PR, Machado Cdos S, Monteiro KK, Casalechi HL, de Tarso P, de Carvalho C, Leal-Junior EC. Using Pre-Exercise Photobiomodulation Therapy Combining Super-Pulsed Lasers and Light-Emitting Diodes to Improve Performance in Progressive Cardiopulmonary Exercise Tests. J Athl Train. 2016 Feb;51(2):129-35. doi: 10.4085/1062-6050-51.3.10. Epub 2016 Mar 4. PMID: 26942660; PMCID: PMC4852318.
76 Leal-Junior EC, Vanin AA, Miranda EF, de Carvalho Pde T, Dal Corso S, Bjordal JM. Effect of phototherapy (low-level laser therapy and light-emitting diode therapy) on exercise performance and markers of exercise recovery: a systematic review with meta-analysis. Lasers Med Sci. 2015 Feb;30(2):925-39. doi: 10.1007/s10103-013-1465-4. Epub 2013 Nov 19. PMID: 24249354.
77 Ferraresi C, Beltrame T, Fabrizzi F, do Nascimento ES, Karsten M, Francisco Cde O, Borghi-Silva A, Catai AM, Cardoso DR, Ferreira AG, Hamblin MR, Bagnato VS, Parizotto NA. Muscular pre-conditioning using light-emitting diode therapy (LEDT) for high-intensity exercise: a randomized double-blind placebo-controlled trial with a single elite runner. Physiother Theory Pract. 2015 Jul;31(5):354-61. doi: 10.3109/09593985.2014.1003118. Epub 2015 Jan 14. PMID: 25585514; PMCID: PMC4470717.
78 Ferraresi C, Beltrame T, Fabrizzi F, do Nascimento ES, Karsten M, Francisco Cde O, Borghi-Silva A, Catai AM, Cardoso DR, Ferreira AG, Hamblin MR, Bagnato VS, Parizotto NA. Muscular pre-conditioning using light-emitting diode therapy (LEDT) for high-intensity exercise: a randomized double-blind placebo-controlled trial with a single elite runner. Physiother Theory Pract. 2015 Jul;31(5):354-61. doi: 10.3109/09593985.2014.1003118. Epub 2015 Jan 14. PMID: 25585514; PMCID: PMC4470717.
79 Ferraresi C, Huang YY, Hamblin MR. Photobiomodulation in human muscle tissue: an advantage in sports performance? J Biophotonics. 2016 Dec;9(11-12):1273-1299. doi: 10.1002/jbio.201600176. Epub 2016 Nov 22. PMID: 27874264; PMCID: PMC5167494.
80 Baroni BM, Rodrigues R, Freire BB, Franke Rde A, Geremia JM, Vaz MA. Effect of low-level laser therapy on muscle adaptation to knee extensor eccentric training. Eur J Appl Physiol. 2015 Mar;115(3):639-47. doi: 10.1007/s00421-014-3055-y. Epub 2014 Nov 23. PMID: 25417170.
81 Lee HI, Lee SW, Kim SY, Kim NG, Park KJ, Choi BT, Shin YI, Shin HK. Pretreatment with light-emitting diode therapy reduces ischemic brain injury in mice through endothelial nitric oxide synthase-dependent mechanisms. Biochem Biophys Res Commun. 2017 May 13;486(4):945-950. doi: 10.1016/j.bbrc.2017.03.131. Epub 2017 Mar 24. PMID: 28347821.
82 Wu CS, Hu SC, Lan CC, Chen GS, Chuo WH, Yu HS. Low-energy helium-neon laser therapy induces repigmentation and improves the abnormalities of cutaneous microcirculation in segmental-type vitiligo lesions. Kaohsiung J Med Sci. 2008 Apr;24(4):180-9. doi: 10.1016/S1607-551X(08)70115-3. PMID: 18424354.
83 Lan CC, Wu CS, Chiou MH, Chiang TY, Yu HS. Low-energy helium-neon laser induces melanocyte proliferation via interaction with type IV collagen: visible light as a therapeutic option for vitiligo. Br J Dermatol. 2009 Aug;161(2):273-80. doi: 10.1111/j.1365-2133.2009.09152.x. Epub 2009 Apr 30. PMID: 19438447.
84 Brosseau L, Welch V, Wells G, Tugwell P, de Bie R, Gam A, Harman K, Shea B, Morin M. Low level laser therapy for osteoarthritis and rheumatoid arthritis: a metaanalysis. J Rheumatol. 2000 Aug;27(8):1961-9. PMID: 10955339.
85 Brosseau L, Robinson V, Wells G, Debie R, Gam A, Harman K, Morin M, Shea B, Tugwell P. Low level laser therapy (Classes I, II and III) for treating rheumatoid arthritis. Cochrane Database Syst Rev. 2005 Oct 19;2005(4):CD002049. doi: 10.1002/14651858.CD002049.pub2. PMID: 16235295; PMCID: PMC8406947.
- Reduction of wrinkles and increase of skin elasticity resulting from an increase of collagen and elastic fibers.86
- Reduction of acne.87 88
- Reduction of duration, pain, and occurrence of cold sores.89 90
86 Lee SY, Park KH, Choi JW, Kwon JK, Lee DR, Shin MS, Lee JS, You CE, Park MY. A prospective, randomized, placebo-controlled, double-blinded, and split-face clinical study on LED phototherapy for skin rejuvenation: clinical, profilometric, histologic, ultrastructural, and biochemical evaluations and comparison of three different treatment settings. J Photochem Photobiol B. 2007 Jul 27;88(1):51-67. doi: 10.1016/j.jphotobiol.2007.04.008. Epub 2007 May 1. PMID: 17566756.
87 Aziz-Jalali MH, Tabaie SM, Djavid GE. Comparison of Red and Infrared Low-level Laser Therapy in the Treatment of Acne Vulgaris. Indian J Dermatol. 2012 Mar;57(2):128-30. doi: 10.4103/0019-5154.94283. PMID: 22615511; PMCID: PMC3352636.
88 Na JI, Suh DH. Red light phototherapy alone is effective for acne vulgaris: randomized, single-blinded clinical trial. Dermatol Surg. 2007 Oct;33(10):1228-33; discussion 1233. doi: 10.1111/j.1524-4725.2007.33258.x. PMID: 17903156.
89 Muñoz Sanchez PJ, Capote Femenías JL, Díaz Tejeda A, Tunér J. The effect of 670-nm low laser therapy on herpes simplex type 1. Photomed Laser Surg. 2012 Jan;30(1):37-40. doi: 10.1089/pho.2011.3076. Epub 2011 Nov 2. PMID: 22047597.
90 de Paula Eduardo C, Aranha AC, Simões A, Bello-Silva MS, Ramalho KM, Esteves-Oliveira M, de Freitas PM, Marotti J, Tunér J. Laser treatment of recurrent herpes labialis: a literature review. Lasers Med Sci. 2014 Jul;29(4):1517-29. doi: 10.1007/s10103-013-1311-8. Epub 2013 Apr 13. PMID: 23584730.
- Improving time of wound healing.91
- Reduction of pain and inflammation from achilles tendinitis.92
- Pain relief and improved healing time of bone fractures.93
- Improvement of burn scars.94
- Improvement of carpal tunnel syndrome.95
- Improvement of tennis elbow.96
- Reduced post-workout soreness and recovery.74 77
73 Charriaut-Marlangue C, Bonnin P, Pham H, Loron G, Leger PL, Gressens P, Renolleau S, Baud O. Nitric oxide signaling in the brain: a new target for inhaled nitric oxide? Ann Neurol. 2013 Apr;73(4):442-8. doi: 10.1002/ana.23842. Epub 2013 Mar 12. PMID: 23495069.
77 Ferraresi C, Beltrame T, Fabrizzi F, do Nascimento ES, Karsten M, Francisco Cde O, Borghi-Silva A, Catai AM, Cardoso DR, Ferreira AG, Hamblin MR, Bagnato VS, Parizotto NA. Muscular pre-conditioning using light-emitting diode therapy (LEDT) for high-intensity exercise: a randomized double-blind placebo-controlled trial with a single elite runner. Physiother Theory Pract. 2015 Jul;31(5):354-61. doi: 10.3109/09593985.2014.1003118. Epub 2015 Jan 14. PMID: 25585514; PMCID: PMC4470717.
91 Calderhead RG, Kim WS, Ohshiro T, Trelles MA, Vasily DB. Adjunctive 830 nm light-emitting diode therapy can improve the results following aesthetic procedures. Laser Ther. 2015 Dec 30;24(4):277-89. doi: 10.5978/islsm.15-OR-17. PMID: 26877592; PMCID: PMC4751092.
92 Bjordal JM, Lopes-Martins RA, Iversen VV. A randomised, placebo controlled trial of low level laser therapy for activated Achilles tendinitis with microdialysis measurement of peritendinous prostaglandin E2 concentrations. Br J Sports Med. 2006 Jan;40(1):76-80; discussion 76-80. doi: 10.1136/bjsm.2005.020842. PMID: 16371497; PMCID: PMC2491942.
93 Chang WD, Wu JH, Wang HJ, Jiang JA. Therapeutic outcomes of low-level laser therapy for closed bone fracture in the human wrist and hand. Photomed Laser Surg. 2014 Apr;32(4):212-8. doi: 10.1089/pho.2012.3398. Epub 2014 Mar 20. PMID: 24649935.
94 Gaida K, Koller R, Isler C, Aytekin O, Al-Awami M, Meissl G, Frey M. Low Level Laser Therapy--a conservative approach to the burn scar? Burns. 2004 Jun;30(4):362-7. doi: 10.1016/j.burns.2003.12.012. PMID: 15145195.
95 Li ZJ, Wang Y, Zhang HF, Ma XL, Tian P, Huang Y. Effectiveness of low-level laser on carpal tunnel syndrome: A meta-analysis of previously reported randomized trials. Medicine (Baltimore). 2016 Aug;95(31):e4424. doi: 10.1097/MD.0000000000004424. PMID: 27495063; PMCID: PMC4979817.
96 Bjordal JM, Lopes-Martins RA, Joensen J, Couppe C, Ljunggren AE, Stergioulas A, Johnson MI. A systematic review with procedural assessments and meta-analysis of low level laser therapy in lateral elbow tendinopathy (tennis elbow). BMC Musculoskelet Disord. 2008 May 29;9:75. doi: 10.1186/1471-2474-9-75. PMID: 18510742; PMCID: PMC2442599.
97 Chow RT, Johnson MI, Lopes-Martins RA, Bjordal JM. Efficacy of low-level laser therapy in the management of neck pain: a systematic review and meta-analysis of randomised placebo or active-treatment controlled trials. Lancet. 2009 Dec 5;374(9705):1897-908. doi: 10.1016/S0140-6736(09)61522-1. Epub 2009 Nov 13. Erratum in: Lancet. 2010 Mar 13;375(9718):894. PMID: 19913903.
98 Ruaro JA, Fréz AR, Ruaro MB, Nicolau RA. Low-level laser therapy to treat fibromyalgia. Lasers Med Sci. 2014 Nov;29(6):1815-9. doi: 10.1007/s10103-014-1566-8. Epub 2014 May 7. PMID: 24801056.
99 Avci P, Gupta GK, Clark J, Wikonkal N, Hamblin MR. Low-level laser (light) therapy (LLLT) for treatment of hair loss. Lasers Surg Med. 2014 Feb;46(2):144-51. doi: 10.1002/lsm.22170. Epub 2013 Aug 23. PMID: 23970445; PMCID: PMC3944668.
100 Zarei M, Wikramanayake TC, Falto-Aizpurua L, Schachner LA, Jimenez JJ. Low level laser therapy and hair regrowth: an evidence-based review. Lasers Med Sci. 2016 Feb;31(2):363-71. doi: 10.1007/s10103-015-1818-2. Epub 2015 Dec 21. PMID: 26690359.
105 Afifi L, Maranda EL, Zarei M, Delcanto GM, Falto-Aizpurua L, Kluijfhout WP, Jimenez JJ. Low-level laser therapy as a treatment for androgenetic alopecia. Lasers Surg Med. 2017 Jan;49(1):27-39. doi: 10.1002/lsm.22512. Epub 2016 Apr 25. PMID: 27114071.
101 Yousefi-Nooraie R, Schonstein E, Heidari K, Rashidian A, Akbari-Kamrani M, Irani S, Shakiba B, Mortaz Hejri SA, Mortaz Hejri SO, Jonaidi A. Low level laser therapy for nonspecific low-back pain. Cochrane Database Syst Rev. 2007 Apr 18;(2):CD005107. doi: 10.1002/14651858.CD005107.pub2. Update in: Cochrane Database Syst Rev. 2007;(4):CD005107. Update in: Cochrane Database Syst Rev. 2008;(2):CD005107. PMID: 17443572.
102 Yousefi-Nooraie R, Schonstein E, Heidari K, Rashidian A, Akbari-Kamrani M, Irani S, Shakiba B, Mortaz Hejri SA, Mortaz Hejri SO, Jonaidi A. Low level laser therapy for nonspecific low-back pain. Cochrane Database Syst Rev. 2007 Apr 18;(2):CD005107. doi: 10.1002/14651858.CD005107.pub2. Update in: Cochrane Database Syst Rev. 2007;(4):CD005107. Update in: Cochrane Database Syst Rev. 2008;(2):CD005107. PMID: 17443572.
103 Glazov G, Yelland M, Emery J. Low-level laser therapy for chronic non-specific low back pain: a meta-analysis of randomised controlled trials. Acupunct Med. 2016 Oct;34(5):328-341. doi: 10.1136/acupmed-2015-011036. Epub 2016 May 20. PMID: 27207675; PMCID: PMC5099186.
After only one treatment, which occurred between 8am and 9am, color contrast test improved by 12%-17%. After a week, those tested still retained a 10% improvement over baseline.104
104 Shinhmar H, Hogg C, Neveu M, Jeffery G. Weeklong improved colour contrasts sensitivity after single 670 nm exposures associated with enhanced mitochondrial function. Sci Rep. 2021 Nov 24;11(1):22872. doi: 10.1038/s41598-021-02311-1. PMID: 34819619; PMCID: PMC8613193.
- Singh, R., Kølvraa, S., Bross, P., Christensen, K., Bathum, L., Gregersen, N., Tan, Q., & Rattan, S. I. (2010). Anti-inflammatory heat shock protein 70 genes are positively associated with human survival. Current pharmaceutical design, 16(7), 796–801. https://doi.org/10.2174/138161210790883499
- Jezová, D., Vigas, M., Tatár, P., Jurcovicová, J., & Palát, M. (1985). Rise in plasma beta-endorphin and ACTH in response to hyperthermia in sauna. Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme, 17(12), 693–694. https://doi.org/10.1055/s-2007-1013648
- Miller, D. B., & O'Callaghan, J. P. (2005). Aging, stress and the hippocampus. Ageing research reviews, 4(2), 123–140. https://doi.org/10.1016/j.arr.2005.03.002
- Srikanthan, P., & Karlamangla, A. S. (2014). Muscle mass index as a predictor of longevity in older adults. The American journal of medicine, 127(6), 547–553. https://doi.org/10.1016/j.amjmed.2014.02.007
-
Laukkanen T, Lipponen J, Kunutsor SK, Zaccardi F, Araújo CGS, Mäkikallio TH, Khan H, Willeit P, Lee E, Poikonen S, Tarvainen M, Laukkanen JA. Recovery from sauna bathing favorably modulates cardiac autonomic nervous system. Complement Ther Med. 2019 Aug;45:190-197. doi: 10.1016/j.ctim.2019.06.011. Epub 2019 Jun 22. PMID: 31331560.
-
Hafen PS, Preece CN, Sorensen JR, Hancock CR, Hyldahl RD. Repeated exposure to heat stress induces mitochondrial adaptation in human skeletal muscle. J Appl Physiol (1985). 2018 Nov 1;125(5):1447-1455. doi: 10.1152/japplphysiol.00383.2018. Epub 2018 Jul 19. PMID: 30024339.
-
Kukkonen-Harjula K, Oja P, Laustiola K, Vuori I, Jolkkonen J, Siitonen S, Vapaatalo H. Haemodynamic and hormonal responses to heat exposure in a Finnish sauna bath. Eur J Appl Physiol Occup Physiol. 1989;58(5):543-50. doi: 10.1007/BF02330710. PMID: 2759081.
-
Whitworth JA, Williamson PM, Mangos G, Kelly JJ. Cardiovascular consequences of cortisol excess. Vasc Health Risk Manag. 2005;1(4):291-9. doi: 10.2147/vhrm.2005.1.4.291. PMID: 17315601; PMCID: PMC1993964.
-
Iguchi M, Littmann AE, Chang SH, Wester LA, Knipper JS, Shields RK. Heat stress and cardiovascular, hormonal, and heat shock proteins in humans. J Athl Train. 2012 Mar-Apr;47(2):184-90. doi: 10.4085/1062-6050-47.2.184. PMID: 22488284; PMCID: PMC3418130.
-
Yenari MA, Giffard RG, Sapolsky RM, Steinberg GK. The neuroprotective potential of heat shock protein 70 (HSP70). Mol Med Today. 1999 Dec;5(12):525-31. doi: 10.1016/s1357-4310(99)01599-3. PMID: 10562718.
-
Danzer KM, Ruf WP, Putcha P, Joyner D, Hashimoto T, Glabe C, Hyman BT, McLean PJ. Heat-shock protein 70 modulates toxic extracellular α-synuclein oligomers and rescues trans-synaptic toxicity. FASEB J. 2011 Jan;25(1):326-36. doi: 10.1096/fj.10-164624. Epub 2010 Sep 27. PMID: 20876215; PMCID: PMC3005424.
-
Gregg C, Shikar V, Larsen P, Mak G, Chojnacki A, Yong VW, Weiss S. White matter plasticity and enhanced remyelination in the maternal CNS. J Neurosci. 2007 Feb 21;27(8):1812-23. doi: 10.1523/JNEUROSCI.4441-06.2007. PMID: 17314279; PMCID: PMC6673564.
-
Perseghin G, Price TB, Petersen KF, Roden M, Cline GW, Gerow K, Rothman DL, Shulman GI. Increased glucose transport-phosphorylation and muscle glycogen synthesis after exercise training in insulin-resistant subjects. N Engl J Med. 1996 Oct 31;335(18):1357-62. doi: 10.1056/NEJM199610313351804. PMID: 8857019.
-
Kokura S, Adachi S, Manabe E, Mizushima K, Hattori T, Okuda T, Nakabe N, Handa O, Takagi T, Naito Y, Yoshida N, Yoshikawa T. Whole body hyperthermia improves obesity-induced insulin resistance in diabetic mice. Int J Hyperthermia. 2007 May;23(3):259-65. doi: 10.1080/02656730601176824. PMID: 17523018.
-
Devlin JT, Hirshman M, Horton ED, Horton ES. Enhanced peripheral and splanchnic insulin sensitivity in NIDDM men after single bout of exercise. Diabetes. 1987 Apr;36(4):434-9. doi: 10.2337/diab.36.4.434. PMID: 3102297.
-
Sears ME, Kerr KJ, Bray RI. Arsenic, cadmium, lead, and mercury in sweat: a systematic review. J Environ Public Health. 2012;2012:184745. doi: 10.1155/2012/184745. Epub 2012 Feb 22. PMID: 22505948; PMCID: PMC3312275.
-
Genuis SJ, Beesoon S, Birkholz D, Lobo RA. Human excretion of bisphenol A: blood, urine, and sweat (BUS) study. J Environ Public Health. 2012;2012:185731. doi: 10.1155/2012/185731. Epub 2011 Dec 27. PMID: 22253637; PMCID: PMC3255175.
-
Genuis SJ, Lane K, Birkholz D. Human Elimination of Organochlorine Pesticides: Blood, Urine, and Sweat Study. Biomed Res Int. 2016;2016:1624643. doi: 10.1155/2016/1624643. Epub 2016 Oct 5. PMID: 27800487; PMCID: PMC5069380.
-
Senf SM. Skeletal muscle heat shock protein 70: diverse functions and therapeutic potential for wasting disorders. Front Physiol. 2013 Nov 11;4:330. doi: 10.3389/fphys.2013.00330. PMID: 24273516; PMCID: PMC3822288.
-
Selsby JT, Dodd SL. Heat treatment reduces oxidative stress and protects muscle mass during immobilization. Am J Physiol Regul Integr Comp Physiol. 2005 Jul;289(1):R134-9. doi: 10.1152/ajpregu.00497.2004. Epub 2005 Mar 10. PMID: 15761186.
-
Selsby JT, Rother S, Tsuda S, Pracash O, Quindry J, Dodd SL. Intermittent hyperthermia enhances skeletal muscle regrowth and attenuates oxidative damage following reloading. J Appl Physiol (1985). 2007 Apr;102(4):1702-7. doi: 10.1152/japplphysiol.00722.2006. Epub 2006 Nov 16. PMID: 17110516.
-
Kukkonen-Harjula K, Oja P, Laustiola K, Vuori I, Jolkkonen J, Siitonen S, Vapaatalo H. Haemodynamic and hormonal responses to heat exposure in a Finnish sauna bath. Eur J Appl Physiol Occup Physiol. 1989;58(5):543-50. doi: 10.1007/BF02330710. PMID: 2759081.
-
Velloso CP. Regulation of muscle mass by growth hormone and IGF-I. Br J Pharmacol. 2008 Jun;154(3):557-68. doi: 10.1038/bjp.2008.153. PMID: 18500379; PMCID: PMC2439518.
-
Lecker SH, Goldberg AL, Mitch WE. Protein degradation by the ubiquitin-proteasome pathway in normal and disease states. J Am Soc Nephrol. 2006 Jul;17(7):1807-19. doi: 10.1681/ASN.2006010083. Epub 2006 May 31. PMID: 16738015.
-
Chow LS, Albright RC, Bigelow ML, Toffolo G, Cobelli C, Nair KS. Mechanism of insulin's anabolic effect on muscle: measurements of muscle protein synthesis and breakdown using aminoacyl-tRNA and other surrogate measures. Am J Physiol Endocrinol Metab. 2006 Oct;291(4):E729-36. doi: 10.1152/ajpendo.00003.2006. Epub 2006 May 16. PMID: 16705065.
-
Guillet C, Masgrau A, Walrand S, Boirie Y. Impaired protein metabolism: interlinks between obesity, insulin resistance and inflammation. Obes Rev. 2012 Dec;13 Suppl 2:51-7. doi: 10.1111/j.1467-789X.2012.01037.x. PMID: 23107259.
-
Louard RJ, Fryburg DA, Gelfand RA, Barrett EJ. Insulin sensitivity of protein and glucose metabolism in human forearm skeletal muscle. J Clin Invest. 1992 Dec;90(6):2348-54. doi: 10.1172/JCI116124. PMID: 1469091; PMCID: PMC443389.
-
Zimmerman JL, Shen MC. Rhabdomyolysis. Chest. 2013 Sep;144(3):1058-1065. doi: 10.1378/chest.12-2016. PMID: 24008958.
-
Wei Q, Hill WD, Su Y, Huang S, Dong Z. Heme oxygenase-1 induction contributes to renoprotection by G-CSF during rhabdomyolysis-associated acute kidney injury. Am J Physiol Renal Physiol. 2011 Jul;301(1):F162-70. doi: 10.1152/ajprenal.00438.2010. Epub 2011 Apr 20. PMID: 21511696; PMCID: PMC3129892.
-
King DS, Costill DL, Fink WJ, Hargreaves M, Fielding RA. Muscle metabolism during exercise in the heat in unacclimatized and acclimatized humans. J Appl Physiol (1985). 1985 Nov;59(5):1350-4. doi: 10.1152/jappl.1985.59.5.1350. PMID: 4066564.
-
Michael N. Sawka, C. B. W., Kent B. Pandolf. Thermoregulatory Responses to Acute Exercise-Heat Stress and Heat Acclimation. Handbook of Physiology, Environmental Physiology (2011).
-
Costa RJ, Crockford MJ, Moore JP, Walsh NP. Heat acclimation responses of an ultra-endurance running group preparing for hot desert-based competition. Eur J Sport Sci. 2014;14 Suppl 1:S131-41. doi: 10.1080/17461391.2012.660506. Epub 2012 Mar 19. PMID: 24444197.
-
Scoon GS, Hopkins WG, Mayhew S, Cotter JD. Effect of post-exercise sauna bathing on the endurance performance of competitive male runners. J Sci Med Sport. 2007 Aug;10(4):259-62. doi: 10.1016/j.jsams.2006.06.009. Epub 2006 Jul 31. PMID: 16877041.
-
Chan HCS, McCarthy D, Li J, Palczewski K, Yuan S. Designing Safer Analgesics via μ-Opioid Receptor Pathways. Trends Pharmacol Sci. 2017 Nov;38(11):1016-1037. doi: 10.1016/j.tips.2017.08.004. Epub 2017 Sep 19. PMID: 28935293; PMCID: PMC5690544.
-
Narita M, Khotib J, Suzuki M, Ozaki S, Yajima Y, Suzuki T. Heterologous mu-opioid receptor adaptation by repeated stimulation of kappa-opioid receptor: up-regulation of G-protein activation and antinociception. J Neurochem. 2003 Jun;85(5):1171-9. doi: 10.1046/j.1471-4159.2003.01754.x. PMID: 12753076.
-
Iguchi M, Littmann AE, Chang SH, Wester LA, Knipper JS, Shields RK. Heat stress and cardiovascular, hormonal, and heat shock proteins in humans. J Athl Train. 2012 Mar-Apr;47(2):184-90. doi: 10.4085/1062-6050-47.2.184. PMID: 22488284; PMCID: PMC3418130.
-
Simmonds MA, Iversen LL. Thermoregulation: effects of environmental temperature on turnover of hypothalamic norepinephrine. Science. 1969 Jan 31;163(3866):473-4. doi: 10.1126/science.163.3866.473. PMID: 5762398.
-
Berridge CW, Schmeichel BE, España RA. Noradrenergic modulation of wakefulness/arousal. Sleep Med Rev. 2012 Apr;16(2):187-97. doi: 10.1016/j.smrv.2011.12.003. Epub 2012 Jan 31. PMID: 22296742; PMCID: PMC3278579.
-
Salbaum JM, Cirelli C, Walcott E, Krushel LA, Edelman GM, Tononi G. Chlorotoxin-mediated disinhibition of noradrenergic locus coeruleus neurons using a conditional transgenic approach. Brain Res. 2004 Jul 30;1016(1):20-32. doi: 10.1016/j.brainres.2004.03.078. PMID: 15234248.
-
Gregg C, Shikar V, Larsen P, Mak G, Chojnacki A, Yong VW, Weiss S. White matter plasticity and enhanced remyelination in the maternal CNS. J Neurosci. 2007 Feb 21;27(8):1812-23. doi: 10.1523/JNEUROSCI.4441-06.2007. PMID: 17314279; PMCID: PMC6673564.
-
Goekint, M., Roelands, B., Heyman, E., Njemini, R. & Meeusen, R. Influence of citalopram and environmental temperature on exercise-induced changes in BDNF. Neuroscience letters 494, 150-154, doi:10.1016/j.neulet.2011.03.001 (2011).
-
Maniam, J. & Morris, M. J. Voluntary exercise and palatable high-fat diet both improve behavioural profile and stress responses in male rats exposed to early life stress: role of hippocampus. Psychoneuroendocrinology 35, 1553-1564, doi:10.1016/j.psyneuen.2010.05.012 (2010).
-
Loh HH, Tseng LF, Wei E, Li CH. beta-endorphin is a potent analgesic agent. Proc Natl Acad Sci U S A. 1976 Aug;73(8):2895-8. doi: 10.1073/pnas.73.8.2895. PMID: 8780; PMCID: PMC430793.
-
Lee E, Laukkanen T, Kunutsor SK, Khan H, Willeit P, Zaccardi F, Laukkanen JA. Sauna exposure leads to improved arterial compliance: Findings from a non-randomised experimental study. Eur J Prev Cardiol. 2018 Jan;25(2):130-138. doi: 10.1177/2047487317737629. Epub 2017 Oct 19. PMID: 29048215.
-
London GM, Marchais SJ, Safar ME. Arterial compliance in hypertension. J Hum Hypertens. 1989 Jun;3 Suppl 1:53-6. PMID: 2674442.
-
Leppäluoto J, Westerlund T, Huttunen P, Oksa J, Smolander J, Dugué B, Mikkelsson M. Effects of long-term whole-body cold exposures on plasma concentrations of ACTH, beta-endorphin, cortisol, catecholamines and cytokines in healthy females. Scand J Clin Lab Invest. 2008;68(2):145-53. doi: 10.1080/00365510701516350. PMID: 18382932.
-
Jedema HP, Gold SJ, Gonzalez-Burgos G, Sved AF, Tobe BJ, Wensel T, Grace AA. Chronic cold exposure increases RGS7 expression and decreases alpha(2)-autoreceptor-mediated inhibition of noradrenergic locus coeruleus neurons. Eur J Neurosci. 2008 May;27(9):2433-43. doi: 10.1111/j.1460-9568.2008.06208.x. PMID: 18461718; PMCID: PMC2879008.
-
Williams DR, Epperson LE, Li W, Hughes MA, Taylor R, Rogers J, Martin SL, Cossins AR, Gracey AY. Seasonally hibernating phenotype assessed through transcript screening. Physiol Genomics. 2005 Dec 14;24(1):13-22. doi: 10.1152/physiolgenomics.00301.2004. Epub 2005 Oct 25. PMID: 16249311.
-
Blondin DP, Labbé SM, Tingelstad HC, Noll C, Kunach M, Phoenix S, Guérin B, Turcotte EE, Carpentier AC, Richard D, Haman F. Increased brown adipose tissue oxidative capacity in cold-acclimated humans. J Clin Endocrinol Metab. 2014 Mar;99(3):E438-46. doi: 10.1210/jc.2013-3901. Epub 2014 Jan 13. PMID: 24423363; PMCID: PMC4213359.
-
Matsushita M, Yoneshiro T, Aita S, Kameya T, Sugie H, Saito M. Impact of brown adipose tissue on body fatness and glucose metabolism in healthy humans. Int J Obes (Lond). 2014 Jun;38(6):812-7. doi: 10.1038/ijo.2013.206. Epub 2013 Nov 11. PMID: 24213309.
-
Janský L, Pospísilová D, Honzová S, Ulicný B, Srámek P, Zeman V, Kamínková J. Immune system of cold-exposed and cold-adapted humans. Eur J Appl Physiol Occup Physiol. 1996;72(5-6):445-50. doi: 10.1007/BF00242274. PMID: 8925815.
-
Dulloo AG. Translational issues in targeting brown adipose tissue thermogenesis for human obesity management. Ann N Y Acad Sci. 2013 Oct;1302(1):1-10. doi: 10.1111/nyas.12304. PMID: 24138104; PMCID: PMC4285858.
-
Matsushita M, Yoneshiro T, Aita S, Kameya T, Sugie H, Saito M. Impact of brown adipose tissue on body fatness and glucose metabolism in healthy humans. Int J Obes (Lond). 2014 Jun;38(6):812-7. doi: 10.1038/ijo.2013.206. Epub 2013 Nov 11. PMID: 24213309.
-
Brenner IK, Castellani JW, Gabaree C, Young AJ, Zamecnik J, Shephard RJ, Shek PN. Immune changes in humans during cold exposure: effects of prior heating and exercise. J Appl Physiol (1985). 1999 Aug;87(2):699-710. doi: 10.1152/jappl.1999.87.2.699. PMID: 10444630.
-
Lackovic V, Borecký L, Vigas M, Rovenský J. Activation of NK cells in subjects exposed to mild hyper- or hypothermic load. J Interferon Res. 1988 Jun;8(3):393-402. doi: 10.1089/jir.1988.8.393. PMID: 2457640.
-
Pournot H, Bieuzen F, Louis J, Mounier R, Fillard JR, Barbiche E, Hausswirth C. Time-course of changes in inflammatory response after whole-body cryotherapy multi exposures following severe exercise. PLoS One. 2011;6(7):e22748. doi: 10.1371/journal.pone.0022748. Epub 2011 Jul 28. Erratum in: PLoS One. 2011;6(11). doi:10.1371/annotation/0adb3312-7d2b-459c-97f7-a09cfecf5881. Mounier, Rémi [added]. PMID: 21829501; PMCID: PMC3145670.
-
Lombardi G, Ziemann E, Banfi G. Whole-Body Cryotherapy in Athletes: From Therapy to Stimulation. An Updated Review of the Literature. Front Physiol. 2017 May 2;8:258. doi: 10.3389/fphys.2017.00258. PMID: 28512432; PMCID: PMC5411446.
-
Lin YJ, Anzaghe M, Schülke S. Update on the Pathomechanism, Diagnosis, and Treatment Options for Rheumatoid Arthritis. Cells. 2020 Apr 3;9(4):880. doi: 10.3390/cells9040880. PMID: 32260219; PMCID: PMC7226834.
-
Banfi, Giuseppe, Gianluca Melegati, Alessandra Barassi, Giada Dogliotti, Gianvico Melzi d’Eril, Benoit Dugué, and Massimiliano M. Corsi. Effects of whole-body cryotherapy on serum mediators of inflammation and serum muscle enzymes in athletes Journal of Thermal Biology 34, no. 2 (February 2009): 55–59. https://doi.org/10.1016/j.jtherbio.2008.10.003.
-
Machado AF, Ferreira PH, Micheletti JK, de Almeida AC, Lemes ÍR, Vanderlei FM, Netto Junior J, Pastre CM. Can Water Temperature and Immersion Time Influence the Effect of Cold Water Immersion on Muscle Soreness? A Systematic Review and Meta-Analysis. Sports Med. 2016 Apr;46(4):503-14. doi: 10.1007/s40279-015-0431-7. PMID: 26581833; PMCID: PMC4802003.
-
Higgins TR, Greene DA, Baker MK. Effects of Cold Water Immersion and Contrast Water Therapy for Recovery From Team Sport: A Systematic Review and Meta-analysis. J Strength Cond Res. 2017 May;31(5):1443-1460. doi: 10.1519/JSC.0000000000001559. PMID: 27398915.
-
Ziemann E, Olek RA, Kujach S, Grzywacz T, Antosiewicz J, Garsztka T, Laskowski R. Five-day whole-body cryostimulation, blood inflammatory markers, and performance in high-ranking professional tennis players. J Athl Train. 2012 Nov-Dec;47(6):664-72. doi: 10.4085/1062-6050-47.6.13. PMID: 23182015; PMCID: PMC3499891.
-
Gabay C. Interleukin-6 and chronic inflammation. Arthritis Res Ther. 2006;8 Suppl 2(Suppl 2):S3. doi: 10.1186/ar1917. Epub 2006 Jul 28. PMID: 16899107; PMCID: PMC3226076.
-
Wozniak A, Wozniak B, Drewa G, Mila-Kierzenkowska C. The effect of whole-body cryostimulation on the prooxidant-antioxidant balance in blood of elite kayakers after training. Eur J Appl Physiol. 2007 Nov;101(5):533-7. doi: 10.1007/s00421-007-0524-6. Epub 2007 Aug 1. PMID: 17668231.
-
Halson SL, Bartram J, West N, Stephens J, Argus CK, Driller MW, Sargent C, Lastella M, Hopkins WG, Martin DT. Does hydrotherapy help or hinder adaptation to training in competitive cyclists? Med Sci Sports Exerc. 2014 Aug;46(8):1631-9. doi: 10.1249/MSS.0000000000000268. PMID: 24504431.
-
Mester E, Szende B, Gärtner P. Die Wirkung der Lasstrahlen auf den Haarwuchs der Maus [The effect of laser beams on the growth of hair in mice]. Radiobiol Radiother (Berl). 1968;9(5):621-6. German. PMID: 5732466.
-
de Freitas LF, Hamblin MR. Proposed Mechanisms of Photobiomodulation or Low-Level Light Therapy. IEEE J Sel Top Quantum Electron. 2016 May-Jun;22(3):7000417. doi: 10.1109/JSTQE.2016.2561201. PMID: 28070154; PMCID: PMC5215870.
-
Mintzopoulos D, Gillis TE, Tedford CE, Kaufman MJ. Effects of Near-Infrared Light on Cerebral Bioenergetics Measured with Phosphorus Magnetic Resonance Spectroscopy. Photomed Laser Surg. 2017 Aug;35(8):395-400. doi: 10.1089/pho.2016.4238. Epub 2017 Feb 9. PMID: 28186868; PMCID: PMC5568597.
-
Wang X, Tian F, Soni SS, Gonzalez-Lima F, Liu H. Interplay between up-regulation of cytochrome-c-oxidase and hemoglobin oxygenation induced by near-infrared laser. Sci Rep. 2016 Aug 3;6:30540. doi: 10.1038/srep30540. PMID: 27484673; PMCID: PMC4971496.
-
Carafoli E, Krebs J. Why Calcium? How Calcium Became the Best Communicator. J Biol Chem. 2016 Sep 30;291(40):20849-20857. doi: 10.1074/jbc.R116.735894. Epub 2016 Jul 26. PMID: 27462077; PMCID: PMC5076498.
-
Zhang L, Zhang Y, Xing D. LPLI inhibits apoptosis upstream of Bax translocation via a GSK-3beta-inactivation mechanism. J Cell Physiol. 2010 Jul;224(1):218-28. doi: 10.1002/jcp.22123. PMID: 20333643.
-
Liang J, Liu L, Xing D. Photobiomodulation by low-power laser irradiation attenuates Aβ-induced cell apoptosis through the Akt/GSK3β/β-catenin pathway. Free Radic Biol Med. 2012 Oct 1;53(7):1459-67. doi: 10.1016/j.freeradbiomed.2012.08.003. Epub 2012 Aug 11. PMID: 22917976.
-
Charriaut-Marlangue C, Bonnin P, Pham H, Loron G, Leger PL, Gressens P, Renolleau S, Baud O. Nitric oxide signaling in the brain: a new target for inhaled nitric oxide? Ann Neurol. 2013 Apr;73(4):442-8. doi: 10.1002/ana.23842. Epub 2013 Mar 12. PMID: 23495069.
-
Antonialli FC, De Marchi T, Tomazoni SS, Vanin AA, dos Santos Grandinetti V, de Paiva PR, Pinto HD, Miranda EF, de Tarso Camillo de Carvalho P, Leal-Junior EC. Phototherapy in skeletal muscle performance and recovery after exercise: effect of combination of super-pulsed laser and light-emitting diodes. Lasers Med Sci. 2014 Nov;29(6):1967-76. doi: 10.1007/s10103-014-1611-7. Epub 2014 Jun 19. PMID: 24942380.
-
Miranda EF, Vanin AA, Tomazoni SS, Grandinetti Vdos S, de Paiva PR, Machado Cdos S, Monteiro KK, Casalechi HL, de Tarso P, de Carvalho C, Leal-Junior EC. Using Pre-Exercise Photobiomodulation Therapy Combining Super-Pulsed Lasers and Light-Emitting Diodes to Improve Performance in Progressive Cardiopulmonary Exercise Tests. J Athl Train. 2016 Feb;51(2):129-35. doi: 10.4085/1062-6050-51.3.10. Epub 2016 Mar 4. PMID: 26942660; PMCID: PMC4852318.
-
Leal-Junior EC, Vanin AA, Miranda EF, de Carvalho Pde T, Dal Corso S, Bjordal JM. Effect of phototherapy (low-level laser therapy and light-emitting diode therapy) on exercise performance and markers of exercise recovery: a systematic review with meta-analysis. Lasers Med Sci. 2015 Feb;30(2):925-39. doi: 10.1007/s10103-013-1465-4. Epub 2013 Nov 19. PMID: 24249354.
-
Ferraresi C, Beltrame T, Fabrizzi F, do Nascimento ES, Karsten M, Francisco Cde O, Borghi-Silva A, Catai AM, Cardoso DR, Ferreira AG, Hamblin MR, Bagnato VS, Parizotto NA. Muscular pre-conditioning using light-emitting diode therapy (LEDT) for high-intensity exercise: a randomized double-blind placebo-controlled trial with a single elite runner. Physiother Theory Pract. 2015 Jul;31(5):354-61. doi: 10.3109/09593985.2014.1003118. Epub 2015 Jan 14. PMID: 25585514; PMCID: PMC4470717.
-
Aver Vanin A, De Marchi T, Tomazoni SS, Tairova O, Leão Casalechi H, de Tarso Camillo de Carvalho P, Bjordal JM, Leal-Junior EC. Pre-Exercise Infrared Low-Level Laser Therapy (810 nm) in Skeletal Muscle Performance and Postexercise Recovery in Humans, What Is the Optimal Dose? A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Photomed Laser Surg. 2016 Oct;34(10):473-482. doi: 10.1089/pho.2015.3992. Epub 2016 Aug 29. PMID: 27575834.
-
Ferraresi C, Huang YY, Hamblin MR. Photobiomodulation in human muscle tissue: an advantage in sports performance? J Biophotonics. 2016 Dec;9(11-12):1273-1299. doi: 10.1002/jbio.201600176. Epub 2016 Nov 22. PMID: 27874264; PMCID: PMC5167494.
-
Baroni BM, Rodrigues R, Freire BB, Franke Rde A, Geremia JM, Vaz MA. Effect of low-level laser therapy on muscle adaptation to knee extensor eccentric training. Eur J Appl Physiol. 2015 Mar;115(3):639-47. doi: 10.1007/s00421-014-3055-y. Epub 2014 Nov 23. PMID: 25417170.
-
Lee HI, Lee SW, Kim SY, Kim NG, Park KJ, Choi BT, Shin YI, Shin HK. Pretreatment with light-emitting diode therapy reduces ischemic brain injury in mice through endothelial nitric oxide synthase-dependent mechanisms. Biochem Biophys Res Commun. 2017 May 13;486(4):945-950. doi: 10.1016/j.bbrc.2017.03.131. Epub 2017 Mar 24. PMID: 28347821.
-
Wu CS, Hu SC, Lan CC, Chen GS, Chuo WH, Yu HS. Low-energy helium-neon laser therapy induces repigmentation and improves the abnormalities of cutaneous microcirculation in segmental-type vitiligo lesions. Kaohsiung J Med Sci. 2008 Apr;24(4):180-9. doi: 10.1016/S1607-551X(08)70115-3. PMID: 18424354.
-
Lan CC, Wu CS, Chiou MH, Chiang TY, Yu HS. Low-energy helium-neon laser induces melanocyte proliferation via interaction with type IV collagen: visible light as a therapeutic option for vitiligo. Br J Dermatol. 2009 Aug;161(2):273-80. doi: 10.1111/j.1365-2133.2009.09152.x. Epub 2009 Apr 30. PMID: 19438447.
-
Brosseau L, Welch V, Wells G, Tugwell P, de Bie R, Gam A, Harman K, Shea B, Morin M. Low level laser therapy for osteoarthritis and rheumatoid arthritis: a metaanalysis. J Rheumatol. 2000 Aug;27(8):1961-9. PMID: 10955339.
-
Brosseau L, Robinson V, Wells G, Debie R, Gam A, Harman K, Morin M, Shea B, Tugwell P. Low level laser therapy (Classes I, II and III) for treating rheumatoid arthritis. Cochrane Database Syst Rev. 2005 Oct 19;2005(4):CD002049. doi: 10.1002/14651858.CD002049.pub2. PMID: 16235295; PMCID: PMC8406947.
-
Lee SY, Park KH, Choi JW, Kwon JK, Lee DR, Shin MS, Lee JS, You CE, Park MY. A prospective, randomized, placebo-controlled, double-blinded, and split-face clinical study on LED phototherapy for skin rejuvenation: clinical, profilometric, histologic, ultrastructural, and biochemical evaluations and comparison of three different treatment settings. J Photochem Photobiol B. 2007 Jul 27;88(1):51-67. doi: 10.1016/j.jphotobiol.2007.04.008. Epub 2007 May 1. PMID: 17566756.
-
Aziz-Jalali MH, Tabaie SM, Djavid GE. Comparison of Red and Infrared Low-level Laser Therapy in the Treatment of Acne Vulgaris. Indian J Dermatol. 2012 Mar;57(2):128-30. doi: 10.4103/0019-5154.94283. PMID: 22615511; PMCID: PMC3352636.
-
Na JI, Suh DH. Red light phototherapy alone is effective for acne vulgaris: randomized, single-blinded clinical trial. Dermatol Surg. 2007 Oct;33(10):1228-33; discussion 1233. doi: 10.1111/j.1524-4725.2007.33258.x. PMID: 17903156.
-
Muñoz Sanchez PJ, Capote Femenías JL, Díaz Tejeda A, Tunér J. The effect of 670-nm low laser therapy on herpes simplex type 1. Photomed Laser Surg. 2012 Jan;30(1):37-40. doi: 10.1089/pho.2011.3076. Epub 2011 Nov 2. PMID: 22047597.
-
de Paula Eduardo C, Aranha AC, Simões A, Bello-Silva MS, Ramalho KM, Esteves-Oliveira M, de Freitas PM, Marotti J, Tunér J. Laser treatment of recurrent herpes labialis: a literature review. Lasers Med Sci. 2014 Jul;29(4):1517-29. doi: 10.1007/s10103-013-1311-8. Epub 2013 Apr 13. PMID: 23584730.
-
Calderhead RG, Kim WS, Ohshiro T, Trelles MA, Vasily DB. Adjunctive 830 nm light-emitting diode therapy can improve the results following aesthetic procedures. Laser Ther. 2015 Dec 30;24(4):277-89. doi: 10.5978/islsm.15-OR-17. PMID: 26877592; PMCID: PMC4751092.
-
Bjordal JM, Lopes-Martins RA, Iversen VV. A randomised, placebo controlled trial of low level laser therapy for activated Achilles tendinitis with microdialysis measurement of peritendinous prostaglandin E2 concentrations. Br J Sports Med. 2006 Jan;40(1):76-80; discussion 76-80. doi: 10.1136/bjsm.2005.020842. PMID: 16371497; PMCID: PMC2491942.
-
Chang WD, Wu JH, Wang HJ, Jiang JA. Therapeutic outcomes of low-level laser therapy for closed bone fracture in the human wrist and hand. Photomed Laser Surg. 2014 Apr;32(4):212-8. doi: 10.1089/pho.2012.3398. Epub 2014 Mar 20. PMID: 24649935.
-
Gaida K, Koller R, Isler C, Aytekin O, Al-Awami M, Meissl G, Frey M. Low Level Laser Therapy--a conservative approach to the burn scar? Burns. 2004 Jun;30(4):362-7. doi: 10.1016/j.burns.2003.12.012. PMID: 15145195.
-
Li ZJ, Wang Y, Zhang HF, Ma XL, Tian P, Huang Y. Effectiveness of low-level laser on carpal tunnel syndrome: A meta-analysis of previously reported randomized trials. Medicine (Baltimore). 2016 Aug;95(31):e4424. doi: 10.1097/MD.0000000000004424. PMID: 27495063; PMCID: PMC4979817.
-
Bjordal JM, Lopes-Martins RA, Joensen J, Couppe C, Ljunggren AE, Stergioulas A, Johnson MI. A systematic review with procedural assessments and meta-analysis of low level laser therapy in lateral elbow tendinopathy (tennis elbow). BMC Musculoskelet Disord. 2008 May 29;9:75. doi: 10.1186/1471-2474-9-75. PMID: 18510742; PMCID: PMC2442599.
-
Chow RT, Johnson MI, Lopes-Martins RA, Bjordal JM. Efficacy of low-level laser therapy in the management of neck pain: a systematic review and meta-analysis of randomised placebo or active-treatment controlled trials. Lancet. 2009 Dec 5;374(9705):1897-908. doi: 10.1016/S0140-6736(09)61522-1. Epub 2009 Nov 13. Erratum in: Lancet. 2010 Mar 13;375(9718):894. PMID: 19913903.
-
Ruaro JA, Fréz AR, Ruaro MB, Nicolau RA. Low-level laser therapy to treat fibromyalgia. Lasers Med Sci. 2014 Nov;29(6):1815-9. doi: 10.1007/s10103-014-1566-8. Epub 2014 May 7. PMID: 24801056.
-
Avci P, Gupta GK, Clark J, Wikonkal N, Hamblin MR. Low-level laser (light) therapy (LLLT) for treatment of hair loss. Lasers Surg Med. 2014 Feb;46(2):144-51. doi: 10.1002/lsm.22170. Epub 2013 Aug 23. PMID: 23970445; PMCID: PMC3944668.
-
Zarei M, Wikramanayake TC, Falto-Aizpurua L, Schachner LA, Jimenez JJ. Low level laser therapy and hair regrowth: an evidence-based review. Lasers Med Sci. 2016 Feb;31(2):363-71. doi: 10.1007/s10103-015-1818-2. Epub 2015 Dec 21. PMID: 26690359.
-
Yousefi-Nooraie R, Schonstein E, Heidari K, Rashidian A, Akbari-Kamrani M, Irani S, Shakiba B, Mortaz Hejri SA, Mortaz Hejri SO, Jonaidi A. Low level laser therapy for nonspecific low-back pain. Cochrane Database Syst Rev. 2007 Apr 18;(2):CD005107. doi: 10.1002/14651858.CD005107.pub2. Update in: Cochrane Database Syst Rev. 2007;(4):CD005107. Update in: Cochrane Database Syst Rev. 2008;(2):CD005107. PMID: 17443572.
-
Huang Z, Ma J, Chen J, Shen B, Pei F, Kraus VB. The effectiveness of low-level laser therapy for nonspecific chronic low back pain: a systematic review and meta-analysis. Arthritis Res Ther. 2015 Dec 15;17:360. doi: 10.1186/s13075-015-0882-0. PMID: 26667480; PMCID: PMC4704537.
-
Glazov G, Yelland M, Emery J. Low-level laser therapy for chronic non-specific low back pain: a meta-analysis of randomised controlled trials. Acupunct Med. 2016 Oct;34(5):328-341. doi: 10.1136/acupmed-2015-011036. Epub 2016 May 20. PMID: 27207675; PMCID: PMC5099186.
- Shinhmar H, Hogg C, Neveu M, Jeffery G. Weeklong improved colour contrasts sensitivity after single 670 nm exposures associated with enhanced mitochondrial function. Sci Rep. 2021 Nov 24;11(1):22872. doi: 10.1038/s41598-021-02311-1. PMID: 34819619; PMCID: PMC8613193.
- Afifi L, Maranda EL, Zarei M, Delcanto GM, Falto-Aizpurua L, Kluijfhout WP, Jimenez JJ. Low-level laser therapy as a treatment for androgenetic alopecia. Lasers Surg Med. 2017 Jan;49(1):27-39. doi: 10.1002/lsm.22512. Epub 2016 Apr 25. PMID: 27114071.
- Janssen CW, Lowry CA, Mehl MR, Allen JJ, Kelly KL, Gartner DE, Medrano A, Begay TK, Rentscher K, White JJ, Fridman A, Roberts LJ, Robbins ML, Hanusch KU, Cole SP, Raison CL. Whole-Body Hyperthermia for the Treatment of Major Depressive Disorder: A Randomized Clinical Trial. JAMA Psychiatry. 2016 Aug 1;73(8):789-95. doi: 10.1001/jamapsychiatry.2016.1031. Erratum in: JAMA Psychiatry. 2016 Aug 1;73(8):878. PMID: 27172277.
- Masuda A, Nakazato M, Kihara T, Minagoe S, Tei C. Repeated thermal therapy diminishes appetite loss and subjective complaints in mildly depressed patients. Psychosom Med. 2005 Jul-Aug;67(4):643-7. doi: 10.1097/01.psy.0000171812.67767.8f. PMID: 16046381.
- Cypess AM, Weiner LS, Roberts-Toler C, Franquet Elía E, Kessler SH, Kahn PA, English J, Chatman K, Trauger SA, Doria A, Kolodny GM. Activation of human brown adipose tissue by a β3-adrenergic receptor agonist. Cell Metab. 2015 Jan 6;21(1):33-8. doi: 10.1016/j.cmet.2014.12.009. PMID: 25565203; PMCID: PMC4298351.